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THE MODES OF INTERNAL MAGNETO-GRAVITY WAVES*

by
F. Winterberg and Alden McLellan IV
Desert Research Institute and Department of Physics
University of Nevada
Reno, Nevada

ABSTRACT

Small amplitude low frequency waves are treated in
a plasma of infinite conductivity in the presence of magnetic
and gravitational fields. In general, there are three kinds
of wave motion: namely, acoustic, gravity, and hydromagnetic.
In this analysis, three wave modes were found which we called
the +mode, -mode, and the Alfven mode. Each mode is strongly
coupled to each of the three kinds of motions, with the
exception of the Alfven mode. The Alfven mode is independent
of compressibility and gravity, since it can be separated from
the dispersion relation.

The local dispersion relation 1is defived and expressed
in a nondimensional form independent of the constants describing
a particular atmosphere. This dispersion relation is shown
to exhibit the behavior of stable and unstable modes of wave
propagation, which are displayed on a number of graphs and in

tabular form.

* This work was supported in part by the National Aero-
nautics and Space Administration under Grant No. NGR-29-001-016.



The variation of the density with height is taken
“into account by a generalized W.K.B. method. Equations are
found which give the height at which wave reflection occurs.
This determines the maximum heights up to which the three modes

can propagate.

I. INTRODUCTION

The great width of the coronal lines, the high
level of ionization of Fe, Ca, and Ni, the washing out of the
Fraunhofer spectrum by electron scattering, and the vast
extent of the corona indicate an extremely high temperature,
which astrophysicists believe is due to the transfer of energy
from the convection zone by waves. Some authorsL6 used

acoustic waves to account for the corona heating, others7_11

1 M. schwarzschild, Ap. J. 107, 1 (1948).
2 L. Biermann, Zs. f. Astrophysik 25, 161 (1948).
3 E. Schatzman, Ann. de Astrophysique 12, 203 (1949).
4 W. Unno and K. Kawabata, Pub. Astr. Soc. Japan 7, 21‘(1955).
> P. Weymann, Ap. J. 132, 452 (1960).
6 C. Jager, Bull. Astr. Inst. Netherlands 16, 71 (1961).
7 H. Alfven, Monthly Notices 107, 211 (1947).
8 T.G. Cowling, THE SUN, Univ. of Chicago Press; Chicago (1953).
? V.C.A. Ferraro, Ap. J. 119, 393 (1954).
10 H. Piddington, Monthly Notices 116, 314 (1956).
11

D.E. Osterbrock, Ap. J. 134, 347 (1961).
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considered hydromagnetic waves as responsible, and another12

used internal gravity waves for an explanation. One very
’special situation is treated by Yu13.

However, in a magnetized atmosphere consisting of
a plasma, it is in principle impossible to consider either
one of these modes independently from the others. All modes
interact with each other and have to be considered simultane-
ously. Therefore, we have investigated plasma wave propagation
within a magnetized atmosphere under the influence of gravity
in the magneto-hydrodynamic (M.H.D.) approximation, which is
valid for low frequency waves. We will only consider the
propagation of these waves in a magnetized atmosphere, and
therefore neglect dissipative effects arising from viscosity,
electrical resistivity, and heat conductivity.

With the addition of a magnetic field, the problem
becomes much more complicated, not only by the introduction of
another mode of propagation (Alfven mode), but also due to
the fact that the magnetic field is a vector, thereby creating
a third direction, which can be aligned arbitrarily with

respect to the gravity vector g and the wave vector k.

12 y.A. Whitaker, Ap. J. 137, 914 (1963).

13 ¢.p. Yu, Phys. Fluids 8, 650 (1965).



2. FUNDAMENTAL EQUATIONS

The fundamental equations necessary to describe

the wave motions are (in Gaussian units)

1) Euler equation:14
P %“(!-V)K = -Yp * og

-z Hx (7 x H) . (2.1)

In this equation v is the velocity vector of a particle of the
oscillating medium, p is the pressure, p the density, g the
gravity vector, and H the magnetic field strength. For
convenience we choose g to be along the negative z direction
(downward), and we choose to orient the coordinate system so
that the arbitrarily directed unperturbed magnetic field in the
absence of wave motion has no y component. Thus, we have

g= 8¢, (2,2)
and

H = Hey + He

o

. , (2.3)

where e and e, are unit vectors in the x and z directions,

respectively.

2) Continuity equation:

%@—"V-(D_Y.) =0 . (2,4)

14 T.G. Cowling, MAGNETOHYDRODYNAMICS, Interscience, New York,
(1957).



3) Second law of thermodynamics: (adiabatic approximation)

=?+.\_I_.V.5= 0

Q-a]Qu
t|n

’ (2.5)

where s is the specific entropy.

4) Equation of state:

e = o(p,s) (2.6)

Thus, we have for the total differential

do = 22} as + 22| dp (2.7)

5) Ohm-Maxwell equation:15

H

L

== U x (¥ x ) . (2.8)

t

We will assume that for the equilibrium conditions
the variation of density, pressure, and entropy with height
is exponential, as is the case for an ideal gas. Thus, we

have
e—z/h

-z/h (2.9)

15 16, Cowling, ibid.




where o, and p , are constants, and h is the so-called

""scale height",

3., THE LINEARIZED EQUATIONS OF MOTION
We assume that all deviations of the perturbed
quantities from their equilibrium values are small. Hence,

we may put to first order:

p(r,t) =|p, + o‘(_r_,t)] e'z/h,

p,+ p‘(z,t)] e 2/h,

[t}

p(r,t)

s(r,t) s +'s”(r,t),

€q

and

oy
1

H,+ H (x,1) : (3.1)

where H is constant. The quantities p”, p”, s”, and H”,
together with the velocity v = v(r,t), are considered to be
perturbing quantitites of first order.

Consider the Euler equation (2.1) to zeroth

order for equilibrium conditions:

0 = -Vp + g . (3.2)



By combining eq. (2.9) with eq. (3.2), we have

p
g = _H.;_ g—z . , (3.3)

We substitute the quantities (3.1) into the
fundamental equations (2.1, (2.4), (2.5), and (2.7), and
neglect the products of the perturbing quantities. With
the help of eq. (3.2), there results the linearized Euler

equation:

- P _ 1 -
3 5 o g m—' "H'o X (V X H) . (3.4)

The linearized continutity equation becomes

p
—B-E— + p V‘K - Ho— (X.EZ) = 0 . - (3.5)

[~}

The second law of thermodynamics can be written

in linearized form as:

ds |
. eq _
3% (ve,) 2 =0 : (3.6)

The linearized Ohm-Maxwell equation is:



9
3

b:\

=V x (vx H) (3.7)

r’

We linearize the equation of state by observing
thaf the density is a continuous function of both the
entropy énd pressure, so that we can perform a Taylor
expansion abcut the equilibrium state. Keeping only first

order terms, eq. (2.7) becomes

3p ap -
o =|o + as° S” + 8p° P |e z/h (3.8)
=] p [+ S
By substitution, we have
Bpo 1
p- = 3s s® + TP‘ ’ (309)
o a

It is to be noted that the zero subscripts of the partial
derivatives indicate that these quantities are evaluated at

their equilibrium values. In eq. (3.9), a =[}p /3p ) ]-1/2
[~ (]
s

is known as the sound velocity in the medium.
Taking the time derivative of the Euler equation

(3.4) and eq. (3.9), we obtain, respectively:

IV . .
-+ 1 v 3p° . 1 ap e
P at he 3t =z
3t o o
1 3e” 1 3H"\ _
s 3t &° 4,,peq H x (vxs3) =0, (3.10)
o



and

ap _ o as” _‘1 32' =
ot 3S ) 3t ;2' 3t 0 . (3.11)
p

Eqsf (3.5), (3.6), (3.7), (3.10), and (3.11)
form a set of linear homogeneous equations for the unknowns
v, p”, P°, s°, and H”. From these equations and the plane
wave assumption, it is possible to derive the dispersion
relation.

In our case, however, it is expedient to first
reduce the set of eqs. (3.5), (3.6), (3.7), (3.10), and (3.11)
by eliminating the unknowns p“, p°, s°, and H” resulting in
only one equation for v. For example, solving eq. (3.5)
for 3p°/3t, eq. (3.6) for 3s-/at, eq. (3.7) for 3H"/3t, and
eq. (3.11) for ap°/3t; substituting 3p~-/3t of eq. (3.5)
“and 3s-/3t of eq. (3.7) into eq. (3.11), and then substituting
3p~/at of eq. (3.11),Qp'/8t of eq. (3.5), andhaﬂ’/at of
eq. (3.7) into eq. (3.10), we have for the equatioh of

V.

3y a2 2
— t 5 V (vre_) - a~ v (v*v)
ot
2 dp ds 2
a o e - a
S (v-e,) 35 —HES if (vee,) e, *
o o



(continued)

aZ a2 apo dse
(V) e, - HEO (v-e,) s /o _HES 2
(v-e,) 1
- —5— 8+t (V-y) g+ Trp —~ H X4V X [V x (v x g_)] =0
eq ° °

(3.12)

The vector differential equation (3.12) represents a set of
three linear homogeneous differential equations for the
unknowns Vys Vy’ and v, .
4. PERFECT GAS ASSUMPTION

It is quite obvious that the case of a perfect
gas deserves special consideration for the reason of being a
very good approximation in most situations and for its math-
ematical simplicity.

For a perfect gas under adiabatic compression, we
have

pp Y=po 7 ’ ' (4.1)

o o /
where vy = cp/cv is the ratio of the specific heats, at
constant pressure and density. For a momatomic gas, one
has y= 5/3 = 1.6666... . From eq. (4.1) and the definition

of sound, we have

-10-



T R (4.2)
o G )

With the help of eqs. (3.3) and (4.2), we can express the

scale height as follows:

2

h = &
gy

(4.3)

To express the term in the square brackets of
eq. (3.12) for the case of an ideal gas, we consider the

well-know thermodynamic relations

3s _ 1 3p op _ T 9p
B—I)-) = p—z —a——) and -a—s—) = —C; ﬂ) ’ (4 .4 )
T P P P

where T is the absolute temperature. By making use of eqgs.

(3.2) and (4.4), we can write

2 3p ds 2 9p 3s dp
a o _ a o o e
YEE ‘ dz= o 3s ) ap ) dz

<] o] p o [} p [] T
et 2N e 2

o c 3T o oT

o P P ° p
2

T 2g % g .2

ol ad e A B o = cT ® - ((4.5)
P . p P

It is expedient to put the velocity of sound in

still another form. For the peivfect gas assumption, we have

0
1
O
i
pie

= c,(y- 1) , (4.6)

-11-



where R is the gas constant, and A is the molecular weight.

Thus, from Eq. (4.2) we obtain

p

With eqs. (4.5) and (4.7), the term in the square brackets
of eq. (3.12) becomes
2 9p ds,

Fwre)) T ey -1 (weoe

2)
P
By substitution of eq. (4.8) into eq. (3.12), we have the

equation for v for acoustic magneto-gravity waves within a

perfect gas

- a” grad div v - grad (v * g)
ot :
-g (v - 1) div v + 41 H x curl curl (v x H )
- "peq —o - -0

(4.9)

5. PLANE WAVE ANALYSIS

For plane waves, the velocity.describing the wave

motion varies sinusoidally as follows:

i(k'r - wt)

v(r,t) = v e : (5.1)

where v is a constant vector.

-12-

a® =y T =c T(y-1). | (4.7)

° ° (4.8)

0.



‘We assume the wavelength to be small compared to the
scale height. This assumption allows us to consider Peq
in eq. (4.9) as a constant in the lowest approximation. In
‘a bétter approximation, such as the W.K.B. approximation in
section il, we will assume P eq to be slowly varying.

After inserting eq. (5.1) into eq. (4.9), there

results

wiv - alx vk + i(vegk + i(r1) (k'V)g

+ﬂi—_§°x k x [EX(xxﬂo)] 0 . (5.2)

Vector equation (5.2) represents a set of three linear

homogeneous equations for the unknowns Vs Voo and v_. The

y z
condition for a non-trival solution, the vanishing of the

‘determinant of the coefficients, is the dispersion relation.

6. THE DISPERISON RELATION

The dispersion relation can be obtained from the
three components of the equation of motion (5.2) by putting
the determinant of the coefficients equal to zero. However,
the dispersion relation can be derived more easily in a dif-

ferent way by forming the dot products of eq. (5.2) with k, g,
and H .
o

-13-




For this purpose, it is convenient to bring eq. (5.2) into a
different form by expanding the multiple vector product of the

last term in eq. (5.2):

i, xdx e x wxn)|be ®B) @om)k
HE (k- k- k- H)v e (k-v) (k-H)H
(6:1)
By substituting eq. (6.1) into eq. (5.2), we have
wlv - af(k - Wk + iy - gk + i1k - Vg
(k - H) H (k - H)?
+W;1_ (v - H)k - T o _(k'x)k-—a,,—prx
k - v)
+ 1;3;;—— (k *H)H =10 ‘ (6.2)

First, we then take the dot product of eq. (6.2) with k and

obtain

Wiy K -l c wKP + iy ¢ gk

2
+i(y - 1) (k_"v) (g k)

k2 | 2
* e (1'5' | Eo) (! ' Iio) ) Ho (-k— ) y_) =0
eq

-14-



Second, we take the dot product of eq. (6.2) with g, and

-obtain

wlveg) - al(k'v) (k'g) + i(vg) (kog) + i(v-1) (k-v)g

k'g) (k- g) (v'g)
e (CH) (H) - o B (kW) - g (keH )P
eq eq eq
(g-ﬂo)
* 4ﬂpeq (k'ﬂo) (E'X) =0 (6.4)

And third, we take the dot product of eq. (6.2) with H , and
<]

obtain
wl(v-H) - a®(ky) (kH) + iy (H)

+i(y-1) (k'v) (g-H) =0 _ (6.5)

Rearranging eqs. (6.3), (6.4), and (6.5), and noting

that (g-v) = -g (v'e,), we have respectively

2,2
(V k) 2 2 2 13 . . - Hok
vk fw? - afk? s i1 (gk) - g

Peq
2 (k-H ) 2
+ (X'E) K i + (K‘Eo) IFF—&— k

0 (6.6)
eq _

-15-



| (k-g) (g*'H)
(z'k_)[-az(g-g) + i(y-l)gz - ﬁ_g_ HZ + Z'i:‘ (kH )
Peq Peq

wp [o? v taeg - B
+ (v g_) w" + 1(E g_) - T
€q

g (k-g)
+ (y'H) [T}pi (_lg'ﬂo):) =0 (6.7)
eq

and
K [-azcg.go)] g [i(g-ao)]

+ (v'H) [mz] =0 . (6.8)
-]
The unknowns of the above three equations are (v'k),
(v.g), and (v-H ). Setting the determinant of the
- - o

coefficients of eqs. (6.6), (6.7), and (6.8) equal to

zero, we have the dispersion relation:

6, 4]._.2.2 H , W0’
w + w -a%k - ingZ - I;T— k - H—;——
eq eq

CIOSk

vl gl r-1) aPkd) ¢ igy [I—p——— k,
eq

-16-



(cont.)

H, (H_"k)k

+
4
pe

q

H .k

]

‘ingz
(4np

q

a4l xt

(479 )"

7. LIMITING CASES

Sound waves:

and the magnetic field,

-
L, w? HRa 0kd
+Za]( 4:0 + °—°_2 3
eq (4wpeq)
/
2 2 # K 2 .2
2 k™ - g"(vy-1) N CTS (k -kz)
€q
=0 (6.9)

We note that in the absence of gravity

eq. (6.9) reduces to

(7.1)

the dispersion relation valid for sound waves.

Acoustic-Gravity waves:

In the absence of the

magnetic field, eq.

(6.9) reduces to

-17-



4

w

2 . 22 2 .2
* Glgykz - a k™) + g(y-1) (k -kz) =0 (7.2)
/
the dispersion relation valid for acoustic-gravity waves.
If we put ky = 0 in eq. (7.2), we would have the dispersion
relation valid for acoustic-gravity waves in a two-dimensional
space, which was used by Hines16

Gravity waves: For the case of gravity waves in

an incompressible medium, we divide eq. (7.2) by az, which

gives

4 igvk 2
2 z 2 2 .2y _
tf + - az -k ) + 57 (vy-1) (k -kz) =0 (7.3)

r

From eq. (4.8) we obtain

) d
(D 1 Fr) Teq (7.4)
2 ) s dz :
a ° o/ P

We define 6 to be the angle between the wave vector k and

the vertical e . From this definition it follows that

K% - kﬁ - % sin%e (7.5)

16 ¢.0. Hines, Canadian J. Phys. 38, 1441 (1960).

-18-



bBy substituting eqs. (7.4) and(7.5) into eq. (7.3),

we have

. . 2. lgvk, L2
2 aZ
3 ds
2 .. 2
- %— = HESE k™ sin“6 = 0 . (7.6)

°/p
For an incompressible medium, we let the velocity of sound,

'a, become infinite. Eq. (7.6) becomes

3p ds
.2 - _&_ o (] . 2
w = po aso aZJ sin © . (7.7)
P

which is the dispersion relation for gravity waves in an
. . .o 1
incompressible medium

Magnetosonic waves: Letting g = 0 in-eq. (6.9),

we obtain:

17 See for example, L.D. Landau and E.M. Lifshitz, FLUID
MECHANICS, Pergamon Press, London, (1959).

-19-



y2 (H k)2
6 + 4 _aZkZ _ o k2 _ o
@’ * o Tre - X T
eq eq
2 2 2
CHSLI N IS
+ 2 282](2 o + o o kZ
w dnp 2
eq (4npeq)
4
2 (H k) 2
caft =~ x4 -0 . (7.8)
(4np_ )?
eq

Eq. (7.8) is separable into two parts, indicating two

independent modes of wave propagation. We have

,  H1?
= 2 (7.9)
w Tro .
eq
and
H2 (H .k)?

MR B ST D Ll DU e Sy L

w w "peq “peq

(7.10)

Eq. (7.9) expresses the dispersion relation for
the Alfven mode. This mode is purely transverse aﬁd is
independent of the compressibility of the medium.

Eq. (7.10) is the dispersion relation for

longitudinal magnetosonic waves'S.

18 See for example, S. Gartenhaus, ELEMENTS OF PLASMA PHYSICS,

Holt, New York, (1964).
) ' ' -20-



Alfven waves: Last of all, we consider the special

.case of a magnetic field acting on an incompressible medium.
We see that by dividing eq. (7.10) by a’k? and letting the
velocity of sound become infinite, gives again eq. (7.9).

Thus, for this case, only the Alfven mode exists.

8. WAVE MODES AND THE DIMENSIONLESS DISPERSION RELATION
In order to describe the three vectors k, g, and
Eo with respect to each other, we must introduce three angles.
(See Figure 1.)
Thus, first we define the angle n, between the z-
direction and the magnetic field vector, hence

(e -Eo) = H° cosn . (8.1)

z

Second, we define the angle ¢, between the wave propagation

vector and the magnetic field vector, hence
(k.H) = H k cos¢ . (8.2)
- "o [+] .

And third, as in Section 7, we define the angel 6, between the

z- direction and the wave propagation vector, hence

(e,-k) = k cose . (8.3)

-21-



The explicit angular dependence of the dispersion
‘relation is presented by substituting these angles into eq.

(6.9) with the result:

2.2
6 -4 2.2 H 'k 2
w- +w |- a“k® - igyk cose - I%E—_ (1 - cos“¢)
eq

2,3
2 H"k

2 2 . . o
+ W g (y-1)k s1n29 + 1gy Z?E;;‘(cose cCos¢ + COSn) COS¢

, B TR
(=] o
+ 2Za Tro cos ¢ + Tro~ cos ¢
eq eq
HU K 3 2 HZ K 2 2
-igy —3—————7 cos“¢ cosn - g“(vy-1) I%E_ cos“¢ sin“e
(4"Deq) eq
TR
-a2 —3—————7 cos4¢ =0 ., (8.4)
(4m0e4)

-32-



Eq. (6.9) may be separated into two parts, indicating two

independent modes of wave propagation. We have

1 2
,  H K

wo o= Tro
. eq

and

4

2,2

ot o+l (-igykz - a’k

s g?G-1) PkP) +a

As in the magnetosonic case,
Alfven mode, eq. (8.5). The
however, due to the coupling
and compressibility.

In order to obtain
(8.6), we substitute into it

(8.3), which gives

HZ

- (=]
I

, @ k)
4npe

eq

q

k

5

k

2

(8.5)

(8.6)

we see the appearance of the

second mode, eq.

(8.6), is

of gravity, magnetic field,

the angular dependence of eq.

the angles (8.1),

(8.2), and



H2 k2

w4 + wz -igvyk cose - azk2 e
‘ eq
HZ
+ g%(y—l) kzsinze + a2 I%F k4 cosz¢
. eq

2
+ igy ;%4 K3 cosn cos¢ = 0 . (8.7)

"peq

Solving eq. (8.7) for mz, we have

2
2 2,2 1 2 .
w, =1/2 a®k” + E?Eéq k® + 1/2 igyk cos @
a4 222 2 HX p oK
t1/2 a'k - g“"vy“k® cos“e + —3—————7 + 2a 4;p
(4wpeq) eq
2,3
2 H k

+ 2 ia gyk3 cos® + 2 igy Z%B——- cos®
eq .

2.4
- 4 2( -1) k2 sinze -4 a2 H°k cosz¢
g Y z;;;q
H2k3 1/2
-4 igy I%E— cos ¢ cosn . (8.8)

-24-



In order to put this dispersion relation into
dimensionless form, we must first define a characteristic
wave number kc and a characteristic frequencycuc. It 1is

convenient to define

Hg H g
k = — and w = ° (8.9)
c 3 1/2 o4
a (41Tpeq) ;[(4'"°eq)1/2 '
HZ
Let us consider the quantity ———3——2 . From eq. (4.2)
4mp a
we have €q
H? )
- = £ (8.10)
2 Y8
4npeqa
J
where
Pe :
g = q . (8.11)
H™/
° 8n

By substituting eq. (8.9) and (8.10) into eq. (8.8),

we have

-25-



2 3/2
Wf = (1/2‘K2+ %%— + i (%) 81/2 K coso

4 4
¢+ ek’ - 1788y K cos?e + Ko 4 X
' YB

4
- 1/2 yv8 (v-1) K'2 sin’e - %g— c052¢]

3/2 1/2 oy 172
+ i.[(%) 8 coso - (—%) COS ¢ COS 7
1/2
1/2 K3
+ (%EJ cosé] ! . (8.12)
where W = % and K = X | (8.13)
we ke

there is, however, a restriction on the three angles in eq.

(8.12) from spherical trigonmetry given by

0° < (8 +n + ¢) < 360°

As can be seen from eq. (8.12), the dispersion
relation is complex in general, implying stable and unstable
wave motion. For unstable wave motion, the growth rates are

given by the imaginary part of the frequency.

-26-



9. LIMITS OF STABILITY

As can be seen from the dispersion relation (8.12),
there exist two independent modes, which we call the +mode and
the -mode. Eaéh mode splits up into two submodes due to the
fact that the frequency W in eq. (8.12) is squared. If the
dispersion relation is complex, one submode increases and the
other decreases exponentially with time. If the wave motion
is to be stable, there must be no wave growth. This implies
that the imaginary part of the frequency must be zero. The
wave number, Ksl’ below which the atmosphere ceases to be stable
shall be called the wave number stability limit.

To derive the relation for this condition, we rewrite

eq. (8.12) into the following form

w2 = A+ iB = (C + iD)1/? , (9.1)
where
2 KZ
A=1/2K +7§' ’
B = (-5—)3/2 81/2 K cos 6 ,

4 3.2 2 4 4
C=1/4 K' - 1/8 By~ K* cos“e + K— %?

- 1/2 y8 (vy-1) Kz sinze _x cos” ¢ ,

-27-



and

3/2
D = [(%} Bl/z cos6 - Q%l )1/2

L+ (%)1/2 cos 6 K-5

cos ¢ cos 7

(9.2)

Separating WE into a real and an imaginary part,

we have, using Euler's identity

2 iF = 2 + F2)1/2 ia

where

a arctan F/E

Taking the square root of both sides of eq.

expanding, we have

1/4
w, = (82 + B2y el /2

The condition for stability, which implies that the imaginary

part of the frequency is zero, is given by

ig i2w
ez = ete™@ n=20,1, 2,

or

o = 47n

Therefore, due to eq. (9.4)
F/E = tan (4m) = 0 .
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(9.4)

(9.5)

(9.6)

(9.7

(9.8)



Since E is finite, this imples that F = 0 for

- stable wave motion.

To derive the condition for F = 0, we expand eq.

(9.1) and obtain

. | 1/4

WZ =[A t (C2 + Dz)- cos %]
1/2

+5[Bi(CZ+D2) sin%}

= E + iF , (9.9)

where

Q
(]

arctan (D/C), ‘ (9.10)

for which the principal root (-7/2 < ¢ < 7/2) has to be

taken. Thus, the condition for F = 0 becomes

) 1/4
B = + (C2 + DZ) sin %

1/2

2y - S . (9.11)

[1/2 (¢ + D

[}
+1
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By substituting the expressions B,C, and D,
(Eqs. (9.2)) into eq. (9.11), we have the condition for
the imaginary part of the frequency to be zero; that is,
the condition for stability

y 3/2 1/2

(7) 8 K cose = + lL = % K4 - 1/88Y3K?c0529
2 &
4 4 4 2
K K _ 1 _ 2 _. 2. 2K 2
+ :Z;Z + ¥z vB8 (y-1)K ° sin®e B cos” ¢
3/2 1/2 2 1/2
* ) B cos 8 - (517) cos ¢ cosn
1/2 2| M2 4 3.2 2
+ (%g) cos6 K3 -1/4 K - 1/8gy K cos™ @
4 4 :
K K . R
+ YTéT + VB 1/2 YB (Y 1) K sin ¢
4
- ?— cos? o\, (9.12)
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In the followihg cases, we will analyze the
conditions for stable wave modes using eqs. (9.11) and
(9.12).

Case I: In this case the wave vector and the
magnetic-field'are in the vertical direction; 6 = 0°, n=0°,
and ¢ = 0°. First, we consider the -mode, which means

that we choose the plus sign in eq. (9.11). Since B > 0,

we can write

1/2
B= [1/2 (¢? + )12 . ¢ (9.13)
Upon squaring each side and rearranging, we have
4 82 (B2 + ¢) = D°. (9.14)

Substituting the expression B,C, and D (Eq. (9.2)) into
eq. (9.14), and putting 6 = 0°, n= 0°, and ¢=0°, we obtain an identity
This shows that Im(W_) = 0 for all values of K. Hence, stable
wave propagation occurs for the -mode for all values of K.
However, in the +mode case, the minus sign is
chosen in eq. (9.11), and since B is positive, it implies that
Im(W+) # 0 for all values of K (except the trivial case of
K = 0). Hence, wave propagation is unstable for the +mode
for all values of K.

Case II: The wave vector and the magnetic field

are horizontal. o 90°, n= 90°, and ¢ = 0°. In this

i}

case we see that B 0 and D = 0, so our conclusion regarding

-31-



stability will be valid for both the +mode and the -mode.
Eq. (9.11) upon squaring and rearranging, becomes

1/2
c?y = C

This means that for values of K for which C > 0, theﬁ

Im(W,) =‘0, and the modes are stable, but for values of K for
which C < 0, then Im(W,) # 0, and the modes are unstable.

The wave number stability limit is given by

1/2
K, = i/i e (y-1) (9.15)
+ - =
G A

Thus, the waves of both the +mode and the -mode are unstable

for K < Ks and stable for K > KS

1 1°
For this case, the dispersion relation (8.12) is
plotted for the +mode and the -mode for K > Koq in Fig. 2
and Fig. 3, respectively. Im(W_) and im(W_) are plotted in
Fig. 4. .

Case III: This is the case of a vertical wave
vector and a horizontal magnetic field; & = 0°,n = 90°,
and ¢ = 90°. As in Case I, we first consider the -mode,
which means that we choose the plus sign in eq. (9.11).
Since B > 0, -we can again consider eq. (9.14). Substituting
the expressions B, C, and D (eq. (9.2) into eq. (9.14) and
putting 6 = 0°, n= 90°, and ¢ = 90°, we obtain an identify.
This shows that Im(W_) = 0 for all values of K. Hence,

the mode. should be stable for all values of K. However,
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in this case, the -mode does not actually exist, since
Re(W_) = 0 also.

For the +mode situation, the minus sign is chosen
in eq. (9.11), and since B 1is positive, this implies that
Im(W,) # 0 for-all values of K (except the trivial case of
K = 0). Hence, wave propagation is unstable for the +mode
for all values of K.

Case IV: 1In this case the wave vector is horizontal
and the magnetic field is vertical; 6 = 90°,n = 0°, and
¢ = 90°. We see that B = 0 and D = 0 as in Case II, so
our results, as before, will be valid for both the +mode and
the -mode. Eq. (9.11) becomes, upon squaring and re-

arranging

? 1/2
This means that for values of K for which C >_0, then Im(W,)
= 0, and the modes are stable, but for values of K for which
C < 0, then Im(W,) # 0, and the modes are unstable. This

wave number stability limit is given by

) 1/2
Ky = 1/2 8 {Y 1) . (9.16)
1/4 + 7+ 3§
7 18

Thus, the wave of both the +mode and the -mode is unstahle

for K < KS and stable for K »> Ks

1 1°
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For this case, the dispersion relation (8.12) is
plotted for the +mode and the -mode for K > K,, in Fig. 5
and Fig. 6, respectively. Im(W,) and Im(W_) are plotted in
Fig. 7. ‘

' CaselV: The wave vector, the magnetic field, and
the vertical are aligned at 45° with respect to each other;
& = 45°,n = 45°, and ¢ = 45°. First, we consider the -mode,
which means that we choose the plus sign in eq. (9.11).
Since B > 0, we obtain again eq. (9.14). Substituting the
expressions B,C, and D (eq. (9.2)) into eq. (9.14) and
putting & = 45°,n = 45°, and ¢ = 45°, we obtain only one
stable wave number Ks’ given by

[ 5,3

K = Y8 (y-1) | , (9.17)
S !i4(‘/7'1)(Y3'2) |
l M

‘for which Im(W_) = 0.

—

In the +mode situation, the minus sign is chosen in

eq. (9.11), and since B is positive, it implies that Im(W,)

# 0 for all values of K (except the trivial case of K = 0).
Hence, wave propagation is unstable for the +mode for all values
of XK. Im(W_) is plotted in Fig. 8, which shows the inter-
esting case bf a stable motion at one single wave number.

Table 1 lists the ranges of stability for the
different wave modes for several combinations of the angles

B,n , ¢.
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10. GROUP AND PHASE VELOCITIES
Group velocities can be calculated directly from

the dispersion relation (8.12)

3/2 1/2
- oW, _ 1 2 C Y
Vgi = 'ﬁ(—t 'zw—; K + ? K + l('—z—) 8 cos#H
3 3
1 3 3 2 4K 4K
t 3% K” - 1/48vK cos“¢6 + > + "
Yy 8
3 1/2
- yB (y- 1) K sinze - §§§ cosz¢ - Si(ééﬁ K2 COS¢ CcoOsn
3/2 1/2 2 1/2 2
+ 3i(J%) B K cose + 31(?%0 K cose
10.1)
where
4 4
- 4 ., 3.2 2 K K
A = 1/4K 1,88 'YK Cose+?—;7+ﬁ
2 .2 2¢% 2
-1/2 y8(y- 1) K sin“s alvar:3 cos“ ¢
3/2 1/2 2 1/2
+ i (J%J 8 cos® - (—éb COS¢$ COS n
1/2
+ (QL)l/Z cosé KS-
28
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Also, phase velocities can be calculated directly

from eq. (8.12) by

pi '.K . (10'2)

Vg and Vp are dimensionless quantities in units of

the sound velocity a.

11. W.K.B. APPROXIMATION

We assumed above that Peq could be considered a
constant in the lowest approximation, if the wavelength was
small compared with the scale height. A better approximation
is obtained by taking into account the slowly varying change
of the equilibrium density in the vertical direction by a
generalized W.K.B. method, which shall be presented here.

It is known, for instance from the application of
the W.K.B. approximation to the solution of Schrodinger's
equation, that the W.K.B. method gives reasonable good results
even if the condition of a small wavelength is no longer sat-
isfied. Therefore, we can also expect that our results, which
are derived by using the W.K.B. method, are applicable with
reasonable accuracy, even if the wavelength cannot be considered
small against the scale height.

In the plane wave analysis of Section 5, the z-depen-
dence was automatically taken into account by eq. (5.1).

In the W.K.B. method, however, we assume for the

velocity components a dependence of the form

£(2) Jlk ot -uwt) (11.1)

-36-



where k,= k e + kxgy. f(z) describes the unknown z-
dependence to be treated by the W.K.B. method. In eq. (5.1)

it is seen that we had chosen
£(z) = etke? | (11.2)
Now, however, we have, in keeping with the W.K.B. analysis

£(z) = A(z) (2] , (11.3)

where -i®(z) is the phase,and A(z) is a slole varying
function of z. We can consider dZA/dz2 small against A
and, therefore, neglect it.

We will begin the W.K.B. analysis from the

equation of motion (4.9)

2
Vv
= - a? grad div v - grad (v.g) - g(y-1) div v
?t'z v v-g g v
+ 1?%—_' ﬂo x curl curl (v x Ho) =0
eq :

For the velocity dependence, we introduce the expression

from eq. (11.1)

v(r,t) = v, £(z) et &y L0 (11.4)

C

where v _ is a constant vector in the v direction.
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Using the expression (11.4), we perform the various

mathematical operations indicated in eq. (4.9) as follows:

2
3%y A
5 =—w? v £ el(-l-(-L£ wt) R (11.5)
-—C
at
rad divv = kli(wv.re) ¥ v s
g - - —c =z’ dz —1-C
. df a®f | i(ker - ot)
ve, |1y o (Vetey) 2 B
)
(11.6)
grad (v-e ) = [k_li(y_c-_e_z)f
v e, (v.e,) % }61(51£ " ut) (11.7)
J
div v =[i(l(-,|,!c) f
] df ik.r - wt)
* (v.re,) ?I'z']e L= ‘ 2 (11.8)
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and

- 2 .

ﬂo x curl curl (v x l-_lo) = 1(_1 £ Ho (_lgl y_c)
;f(H'V)(k 'H)“idf(H-V)(H-e)

—o —C’ ‘=1 —o dz ‘= —’ ‘=0 =z
i E R ey Mok )

1 dz ° Y-C SZ L4 £ ° —J')
2 2

21 G _.e) (k, H) - g—z% (H -e,) ]
'*f%['f(ﬂo'El ) (K, rv) + i %£ (H e ) Lkl v.)
ci 9 k) (ve) + S ey (e,

Ty B 0% g, az°% €20 Yc'E,

. . ik, 'r -wt)
+ :1_27 (EO'Y_C) (ﬂo EZ) - E'Z—ZHO (XC —e-z)} S -

(11.9)
By substituting eqs. (11.5) - (11.9) into eq.

(4.9), we have, upon collecting terms and canceling the

exponential term
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2. . df
M T az2 vk atlvere) g8

(‘}io . KC) (Eo . li.\.)

4npeq
(H ‘v.)(H e.) H?
- i —C -0 Z df + j (=]
4ﬂpeq dz Z"peq

47p

(X,

(k, "v
eq -t

. df
(Ve 'e,) 3'7?}

(Eo.gz)(kl .!c) df

dmop

eq

dz
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‘v
o

—C

) £

) f

: , 2
G Bk Ile) g e )(veee) g
4npeq dz 4ﬂpeq dZZ
. 2 af . 2 ale . :
+ e ia®(k, "v)) g7 * a (!C'gz) 327 - Il(\"l)g(lf__L vt
2
H--v.)(k, "H) H
ag . B ooy alk, "HY g  H df
-gy (v.'e,) -1 * i (k 'v) 37
c =z’ dz 4npeq dz 4ﬂpeq 1 —c’ dz
W, v B ) g2 :
B 41rpe dzZ * 4; (!C ez) g—% = (.
Q : Peq dz
(11.10)



From eq. (11.3), we have

df _ dA , , de ¢ , and (11.11)
o z- @& AE e
2 2 2 2
£
3 > j 2+ 2R A @Y v %—g e? (11.12)
Z Z Z

By inserting eqs. (11.11) and (11.12) into eq.
(11.10), we obtain terms multiplied by A, dZA/dzz, (dA/dz) (d2 dz)
A(de/dz)%, A a®e/dz%, dA/dz, and A d®/dz. In the spirit of
the W.K.B. method, we consider A(z) to be a function slowly
varying over a wave length 1/k, and for this reason, we neglect
terms multiplied by dzA/dz2 and dA/dz. However, since
d¢/dz « k, terms multiplied by (dA/dz)(d?%/dz) cannot

! be neglected in the W.K.B. approximation, which becomes exact

in the mathematical 1limit k » =,

We then separate eq. (11.10) into two equations;
one equation containing terms multiplied by (dA/dz)(d¢/dz)
and A dZQ/dzz, and the other equation containing terms
multiplied by A, A(d#/dz), and A(d#/dz)?.

Hence, we have, respectively
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2 2
, aa do B Ez) L, % W .e))
dz dz dwo Y 1,2 o
z eq
(H ‘e.) 2 (H +e.)
dA do o —Z d®¢ o —Z
*Ho{("ce)[zrrr—— 7 T ]
z eq
(H 'v.) %o dA do (H e)
+e{r— -A —» (H "e_ ) - 2 LI
z{z Peq [ dzZ z dz dz
. (vey| 2 9A & 2, dndb 2, dadle2
e TEE T G E T
+ z%%ﬁi} -0, (11.13)
and
;w2 W)’ g (e Wk ]
v |vt - e (@ Tt V@ T Ewe J
eq eq eq

(cont.)
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/
H
. . d¢ 2 . deo o
+ -e—Z< (\_/C- Kl) {-18 (Y'l) + 1 a'z- a + 1 a—iﬁ-peq}

\

(H -v.) dZ(H.e)-idf’(ﬁ-li)
+ j’%p_c [- (a—i?) —n —Z dz o —L
eq
\
2 .2 H d:
d o _ ¢ = .
+ (XC'EZ)[ (g—z-‘b) a’ + (a—f) 1—"":; Y8 a;] ? 0
J

(11.14)
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Eq. (11.13) is a three-dimensional vector equation, which

is equivalent to three scalar equations for the three velocity
components of Vs which are Yy Xy’ and v, The condition for
the solution of these three equations is the vanishing of

the determinant of the coefficients. However, here it is
advantageous to take the dot product of eq. (11.13) with

kL,H , and e, - The determinant of the coefficients of

21,2, &

(Xt'kl’ (zc-ﬂo), and (Xc-gz) of the three equations thus

formed is , where i:j denotes the term of the ith TOW

and the jth column:

1'1:5?‘.9_:3%_). sz d¢+Ad2®
) 41tpeq dz dz dz?
1:2 =0
Los 2 Boeg) WKL g de o %
41rpeq dz dz dzz
2:1 =0
2:2 =0
(H e ) 2
2 ‘= -z dA d¢ d”¢
2:3 a 4"Qeq 2 Iz &z + A —dzz

-44-



(1 -e ) dA 4o a%e
4ﬂpeq dz deg dz
) H2 dA  dg a4
and 3:3 = a + 4—“————- 2 Iz dz - A Iz27
"Peq
(11.15)
It follows from setting this determinant to zero that
dA 40 d2¢
2 = - A =
de dz de
which gives 10 -1/2 (11.16)
A =
de

b4

This is the expected relation between the amplitude and the
phase from employing the W.K.B. method.
We treat eq. (11.14) in a similar manner as eq.

(11.13). The condition for the solution of the three scalar
equations contained in the vector eq. (11.14) is for the
determinant of the coefficients to be zero. Again, we obtain
three equations from eq. (11.14) by taking the dot product
of eq. (11.14) with El, H, and gz.' The determinant of the
coefficients of (Kc'k;)’ (xc-ﬂoj and (Kc'gz) of the three

equations is, after dividing by A:
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(&3]
|

w
[}

(H 'k ) ®
4;p k; -1 %E (H

€q
) 2,2 Hf k2
w - a’k, e

€q
d e 2 (H. e )2

+ I ____4._.._-° z +

- 1gkf + 1 a2 g% ki
2 .2
+ d.ji. H° kl —_
dz 41rpeq

_ d ¢ 2 (H Ez) _ i

dz 4npeq
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:

?

(H .e,)(H "k, )

1,k (8,

LET N

a

‘e )

2

4ﬂpe

q



2
H
3:2=-1g(y-1) +1 a2 g% + 1 g% Z%b
eq
(H e )? (H k) (H +e.)
_ 3 de —o —2 -0 ‘—.2 —o —Z
1 Iz dwp * 47p
eq eq
2
2 2 H
2 2 °
and 3:3 = o + 2% (¢ + (D = - ve 4
€q
2
(H k) do (H_ "e)) (H -K)

Setting this determinant to zero gives

(41r eq

3
.6 (H ‘e, (H - (H *e.)
(a——dz) [az — J ( [4132 i) &, ;z

(47p

)

(H,e,)" ot [ 22 W e
S 8Y /% + (a;) 2a”uw . U —
- (dmegy) "Peq
2 3
H «e_ ) (H *k) (H ‘e
+ wZHZ ———————(_° —Z > - 3igy —= ]_i (—°2—Z)
(470 4o (470 4)
202 (H 'Ez)4 , '592(5 e,)’ de. 3]
S Aty —=—y - 6 at — 7 * (&)
(4np ) : (4"Oeq)
(H k,) (H re,) (H -k) (H e )
+ diafu? o v 21020t % S 2
Peq ° (470 )
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. 4 . .
, (H e Mk, )7 e’
fevky ———— v 3gy — —
(4104) (4m0g4)
22 (H 'k )(H ‘e’ , "k )3 "e,)
- 4ia’ky —e—t o —e, ~ 4ia 2 L :
(4Wpeq) (4ﬂoeq)
2 .
2 (H "e.) (H "e )(H "k, )
. (g¢ A S DA N1
z 4ﬂpeq 4ﬂpeq
2 . 2 2
(H "e ) (H "k, ) (H e )
——Zazkfw2 2 — 2a%w?% Te T4 - wZszf —o ~F 5
4Trpeq 4'npeq (4npeq)
. 2 . . 3 3 .
(H "k ) (H "k J(H "e)) (H "k )"(H "e))
_ wzHi 40 L 2 + Sigykf -] L _02—Z + 1g.Y —o —d _02_2
| (470 q) (470 q) (4mpeq)
. 2 . 2 . 2 4
(H "e ) (H "k, )"(H "e ) (H "k, )
+gZ(Y-l)sz_ 4° z + 6a2k3 —o —d — s + gl e Tt
M™eq (4ﬂoeq) (4Wpeq)
. . 2
(H "k, )(H "e_) (H "k, )
+ _d_Q - gYw4 + 210)4 —o0 _.‘. —o —Z + gsz o —1
de 4ﬂpeq 4npeq
2
(H-e) (H 'k J)(H "e)) (H "k )J(H "e)
+ gywzkf o % - 4ia2w2kf ~o "L o 72T _ Zinwzkf o 4 —E —Z
4 °
Wpeq 41rpeq (4npeq)
(cont.)
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2. . 32 X }
(H "'k, )"(H "e_) (H "k J)(H "e )
B = 2 T L G ) S
(4npeq) 4ﬂpeq
(H 'k ) (H "e) KoK 2
+ 4ia2k2 “o 4 o E + w6 - w4a2k2 - w4 o 4
1 (47p )2 + 41p
eq eq
. 2 . .
(H "k, ) (H "k, )(H "e.)
_pt e T wzgzki (y-1) + igyw4kf o —1 o ~Z
4npeq 4npeq
2 2 3 .
(H "k ) H "k ) (H "k )"(H "e_)
T N e e
4wpeq (4ﬂoeq) (4ﬂoeq)
4
2 (H "k. )
2 2 (H "k /) 22 e L7 _ (11.18)
—g (Y'l)kx 2 — a KL .
Teq ( 1Tpeq) .

Eq. (11.18) is a first order differential equation of the

sixth degree, and it can be factored into two first order differential
equations; one of the second degree and one of the fourth degree.

The theory of differential equations allows us to equate each

factor to zero. Upon rearranging terms, we have

. LS 2
dg} % Zi(ﬂo k,) %g ] fh)z
j—e L. o8 o 4
(H "e,) | (H,"e,)
2
. 41w ; b (2) = 0
(H "e,) eq -, (11.19)
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dgz 5; (H 'gz ) a
2 .2 . 2
. d@\z 41rw2 o (2) w Ho B kz _ (Eo _J_)
dz; (H e )2 €q a“(H "e )2 i (H e )2
<z —o —Z - —2
Y (HO.EL ) do Yw24n
-1 &Z + =5 P (2)
a (H "e_) de a“(H "e.) €q
o0 Zz ™o =2
, (H k) 2 amo’
— 2ik{ —o =& ° 31_%_ + > > peq(z)
(H "e_) a a“(H "e_) ,
o —Z o —Z
2.2 '
2,2 2 Hk 2 2
4nw~k W o & dng” (y-1)k
- —t— (z) - — Lt op . (2)
(H "e )2 €q ;7 (H "e_ ) az(H ‘e )2 °q
o0 —2 ') —2 o0 —Z
2 2 .
(H "k, ) k H )
+ kf —o —b ; + gy 2 o "2 = 0
(H -e,) a®  (H ve)). - (11.20)

The solution of the differential equation (11.19)
gives the phase for the W.K.B. solution for the Alfven mode.

The solution of the differential equation (11.20) gives the
phase for the W.K.B. solution of the two remaining modes.

The differential equations (11.19) and (11.20) can be
brought into a form that can be solved by the separation of varia-
bles, after first solving both equations as algebraic equations
of the second and fourth degree in the unknown d¢/de. This can
always be done in closed form for an algebraic equation up to the

fourth degree.
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12. VERTICAL PENETRATION DEPTHS
The condition d¢/dz = 0 implies that the z-component
of the wave number, k, is zero. This gives the condition for
the termination of the wave propagation in the z-direction,
that is, the vertical penetration depth. At this point, 51=5.
Setting d¢/dz = 0 in eq. (11.19) and using the

definition of Pe (the first equation of (2.9)), gives upon

q’
solving for the penetration depth, zpd

dnp w ]
vA = h 1n e — (12.1)
pd c . 2
\l_-l_o l(_;,)
where h is the scale height defined by eq. (4.3). From eq.
(8.5), the dispersion relation for the Alfven mode at
z =0 1is

) (EO'E)Z |
w = —4—1?‘3_— . (12.2)
o

We define two angles. ¢,  is the angle between Eo and EL,
and ¢o is the angle between H and k at z = 0. By the
substitution of eq. (12.2) and the angles QL and ¢° into
eq. (12.1), we have
k2 c052¢
zpd = h 1n i?gg;7;:3 | . (12.3)

But from the definition of the angle 6, we have
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5 - sinfe (12.4)

Thus, eq. (12.3) becomes

c052¢
= h 1n 2 | (12.5)

z 7
sin“9 cos X

pd

’

which is the equation for the penetration depth for the Alfven
mode.

As an example, we will consider the case of a
vertical magnetic field. First. let us suppose that the
wave vector is initially directed vertically, We have 6 = 0°,
¢ = 0°, and §L= 90°, which give zpd = +o, Thus,
we can say that no reflection exists for the Alfven mode for
vertical directed waves in a vertical magnetic field. Second,
let us suppose that the wave vector is initially directed
along the horizontal. We have 6 = 90° and ¢° = ?L R
which give zpd = 0. This result is obvious, since initially
we had no z-component of the wave vector.

Setting d¢/dz = 0 in eq. (11.20), gives upon solving
for the penetration depth

2.2 2

4mp w? - 4qup w®a kf + 4np g° (vy-1) kf
Zpa = N I T 2
oTul7 - aBkl k)7 - dgv(H k) (e k]

(12.6)
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In order to put this equation into a nondimensional form, we

define a ratio of pressures at z = 0, similar to eq. (8.10),

. Bo = o l (12.7)

Using eq. (12.7) and the characteristic wave number and the
characteristic frequency defined by (8.9), we have, upon
substitution into eq. (12.6)
4

Y8 Y8

o 4 2.2 o )
T[W‘WKL*T(Y”I
ﬁ? 2 | z . 3]/2 Bo 1/2 .3

Kl - KL cos %.- iy (7— K_l cosfl cosn

= h 1n4

Zpd

(1278)

where the expression given by the dispersion relation (8.12)

has to be substituted for W.
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13. PARTICLE ORBITS

In this section we consider the orbit of an
individual particle of the medium undergoing wave motion.
The particle orbits can be obtained from the vector equation
(6.2). Upon separating this equation into its components
ex> gy, and €, equating each component to zefo, and re-
arranging the terms, we have respectively the following three

scalar equations:

Myp Vi *oMpg Vy * Qugg tdegg) v, =0 (13.1)
Moy Vi * Moo vy + (u23 + iezs) v, =0 (13.2)

X Z

(ugq * degy) vy * (ugy + degp) vy * (ugg * degz) v, =0

(13.3)
where
2 2.2 (k-H) o, HY
by = et - etk 2 g KMy gk T
eq Peq Peq
2,2.2 Hi (k-H)
My T 78 kK y  ¥mp__ kky * Xno_ kny ’
eq eq
2 (k-H) Hf
by = -atkek, + T (k H, + kH) - i, kek,
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and

-azkxk +

2 2,2

- k .

w a y
2

a kykz +
2

-a kxkz +
2

-a kykz +

wz - azk2

€13 °

€23 °

€31

€32

€33

(kH ) H
o Sk T wme T Ky
q eq
- o kz - o
Moeq Y HTeeq
(kB ) H?
T k H, R k k,
k*H ) H

Peq

(k-H ) 2
+ 2 y P a— szz i rreny
eq eq

-gk‘( ,
-gk ,

8%y
- (Y'l) gkX’
-(v-1) gk_ ,

(v-1) g y
_ngz
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To obtain the particle orbits, we assume that

according to eq. (5.1), the z-component of the velocity has

the form

v, = A ellkr - wt) , (A = Const.) (13.4)

We solve eq. (13.2) for v, and substitute the result into

eq. (13.1). This gives

u u
12 . 12
. - (uys - v, upz) * ile 5 - TP, €53)
X v (13.5)
u VA
(vgg * ~ Ma1)
H22

We then solve eq. (13.2) for Ve and substitute the result into

eq. (13.1). This gives

u H
11 . 11
v = (y3 - W1 Mpz) *ileyg - Vo1 23)
y v (13.6)
M Z
(Ulz - __11 Uzz)
H21

€

For small deviations of the particles from their equilibrium

positions r = x e + ye + z e , we can put

o o—X o~y o—2"

or respectively

3
]
<
]
<
[+



where ¢, n, and ¢ are considered to be small quantities.
By substituting these expressions into eqs. (13.4), (13.5),
and (13.6), and by putting r r on the right-hand-side of eq.

(13.4) according to lowest order pertubation theory, we have

after integrating for the real parts

A
w

£ = - (uqm - Y,,H,,) Sin ‘T - wt)
(u11u22 u12u21) 13722 12723 & °

+ (p22€13 - “12523) cos (E-Eo - wt) (13.8)

A

w .

n = - (uqzu - HqqHoz) sin (k'r -wt)
(u12u21 ulluzz) 13721 11723 °

+ (u21€13 - “11223) cos (E-Eo - wt) (13.9)

and

= - Asin (k'r - wt) (13.10)
w - 0 -
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Eqs. (13.8), (13.9), and (13.10) are the equations for the
particle orbits in parametric form, where time is the parameter.
- We can consider the equilibirum point to be at the

origin without modifying the shape of the particle's path.

So, we set x =y =2z =0, which yields
1
E =x,M=y, and ¢ = z.
Upon introducing the phase x = (k'r - wt), we have for eqs.
(] - To
(13.8), (13.9), and (13.10)
X = A1 sin X, + T1 cos X,

= i +
y A2 sin X, TZ cos X

z = A3 sin X , (13.11)
where
Lo . AfMist22 T Mi2¥e3
1 w A¥3q¥o2 T M12M21
Lo - A[Pistea1 T P11¥23
2 w \Mya¥ay) T H11¥22
_ A
Ay = - %
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o = . A[Y22%13 © M12%23
1 “1M11¥22 T Y12¥21 ’
and
s & = u,.u
= - AfF21 13 11723
2 w

M12%21 7 M1a1¥22

Eqs. (13.11) describe the particle orbit as an ellipse in
parametric form, but do not describe an ellipse located in the
x-y plane nor one aligned with its principal axes along the

x- and y-coordinates. However, it may be put into the familiar
form of an ellipse by means of a three dimensional rotation.

Toward this end, we consider the general orthogonal transformation

x! %1 %12 %13 x
A N %1 %22 °23 y
z! @z OGzp, Gzg zJ , (13.12)

where the transformation matrix (aik) is determined from

the condition that the ellipse shall be located in the

x'-y' plane and alligned with its principal axes along the

x'- and y'-coordinates. Sinée this matrix describes a

general orthogonal transformation, its elements have to satisfy

the six orthogonality and normalization conditions

3
§=1 “15%k T °jk ik, =1, 2,3  (13.13)
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By substituting eqs. (13.11) into eqs. (13.12), we have

1 = .
X Pl sin X, + 91 cos X
y' =T sin x + Q@ <cos ¥
2 ° 2 °
z' =T sinx + Q@ cos x , (13.14)
3 (<] 3 [+
where
3
l‘: .. =123
j 121 "jit ? o
and
2
Q=Z a T J=1,2,3
j i=1 ji i

In order for the particle orbit to be located in the x'-y'

plane, it is required that z' = 0. Since this condition must
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be satisfied for all possible phases x , this implies that
[}

r =0 . (13.15)
3
and
Q =0 . (13.16)
3

Furthermore, in order to align the x' and y' coordinates along

the principal axis of the ellipse, it is required that

Q =0 (13.17)

and

r =0 X (13.18)
2

Eqs. (13.16) and (13.17) are not independent from each other,
because they represent two linear homogeneous equations for
the quantitites T and T, In order that eqs. (13.16) and
(13.17) are satisfied simultaneously, it is required that the
determinant of their coefficients vanish. This condition is

given by

agq gy " Gzp 097 = 0 . (13.19)

The aik's represent nine unknowns, and the orthogonality

and normalization conditioﬂs, eqs. (13.13), give us six conditions
toward the determinantion gf these unknowns. Egs. (13.15), (13.18),
and (13.19) give us the required three additional conditions

necessary to determine all the nine unknowns e Hence, the
A Z61- . v ,



transformation matrix is uniquely determined, and from eq.
(13.14) follows the equation for the particle orbit, which is

in general an ellipse given by
x' y' :
Xl 4+ &= = 1 (13.20)

It is to be noted that the orbits are frequency or wave number

dependent according to eqs. (13.1) and (13.2). The dispersion

relation, eq. (6.9), relates the frequency to the wave number.
For the special case of the Alfven wave, because

of the simplicity of this mode, the particle orbit can be

derived in a more direct way. From the conditions of

transversality which are valid for pure Alfven waves, we have

V.Y—=O
which, with the plane wave solution (5.1), becomes
k-v =0 (13.21)

and furthermore, for Alfven waves we have

‘H =0 : : - (13.22)

|<
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By substituting eqs. (13.21) and (13.22) into eq. (6.2), we

obtain

2
2 (k-H )
WV 1 (glk - g

v=20 . (13.23)
eq .

From the dispersion relation for Alfven waves, eq. (8.5), it
can be seen that eq. (13.23) implies
veg = 0 (13.24)

Thus, the particle velocity vector is both perpendicular
to the manetic field vector H , eq. (13.22), and to the
—o
gravity vector g, eq. (13.24). Hence, the particle orbit is a

straight line directed along the velocity vector v.
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14. CONCLUSION
We have considered small amplitude low frequency
waves in a plasma of infinite conductivity under the influence
of a constant external magnetic and gravitational field. We
have shown the existence of three wave modes, which are unstable
in many cases. One mode, identical with the Alfven mode, and
therefore stable, is independent of compressibility and gravity.
The instabilities do not appear by considering the
hydromagnetic wave motion independent from the internal gravity
wave motion. Our results show instabilities which may be related
to the interchange instability in curved magnetic field con-
figurations, which has been theoretically investigated by Rosenbluth
and Longmirelg. In their case an "effective' gravitational force
was introduced to take into account the centrifugal force on
particle orbits due to field line curvature.
As can be seen from Table 1, there is a large
anisotropy with regard to stable wave propagation. This
behavior does not occur in a treatment neglecting the wave mode
coupling. Therefore, our results suggest that a search be
made for these instabilities in the solar atmosphere. It may
be possible that the violent nature of solar flares which
occur in ionized layers premeated by a magnetic field in

regions above sunspots is related to these instabilities.

19M.N. Rosenbluth and C.L. Longmire, Ann. Phys. (N.Y.) 1, 120 (1957).
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8 | ) +mode -mode

0° 0° 0° U S
90° 90° 0° SL | SL
90° 0° 90° SL SL

0° 90° 90° U NP
90° 90° 90° SL SL
90° 90° 45° SL SL
90° 45° 90° SL SL
45° 90° 90° u U
90° 45° 45° U U
45°  90° 45° U U
45° 45° 90° U U
45° 45° 45° U SWN

0° 45° 45° U U
45° 0° 45° U SWN

TABLE 1. Ranges of stability of certain combination of angles.

§ .... Stable wave propagation occurs for all K.
NP.... No propagation.
SL.... A stability limit exists for which a stable mode

occurs for K »> Ksl and instability occurs for K < Ksl'

SWN... A single discrete wave number exists for which
stable wave motion is possible, otherwise unstable.

U .... Unstable wave propagation.
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Figure

Figure

CAPTIONS:

1. Definition of the angles 8, 7, and ¢.

2. The
K >
4. The
9 =
5 The
K >
6 The
K »
7. The
9 =
8. The

local dispersion relation Re(w+) for
- [+ — o — o
Ksl' 8 = 90 ,'7— 90°, and ¢ = 0°.
growth rates, Im(W_) and Im(W_), for
90°,7 = 90°, and ¢ = 0°.
local dispersion relation Re(W, ) for
= o - o - -}
Ko+ 6 =90°,7%=10°, and ¢ = 90°.
local dispersion relation Re(W_) for
= o = ° = o
Ksl’ & = 90°,7= 0%, and ¢ 90°.
growth rates, Im(W+) and Im(W_ ), for
90°,Iq= 0°, and ¢ = 90°.

growth rate, Im(W_), for

6 =45°,7 =45°, and ¢ = 45°.
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